

Public Health Goals Report 2019-2021

O1. Background

O2. What are Public Health Goals?

03. Water Quality Data Considered

04. Guidelines Followed

O5. Best Available Treatment Technology and Cost Estimates

06.

Constituents Detected that Exceed a PHG or a MCLG

Arsenic Bromate Gross Beta Particle Activity Perchlorate Radium-226 Strontium Tetrachloroethylene Tritium Uranium

07.

Recommendations for Further Action

08.

EXHIBIT A: CA HEALTH & SAFETY CODE 116470 (B)

09.

EXHIBIT B: CA REGULATED CONSITUENTS

10.

EXHIBIT B: ANNUAL WATER QUALITY REPORTS: 2019-2021

BACKGROUND

Provisions of the California Health and Safety Code 116470 (Exhibit A) specify that Rowland Water District, and other water utilities serving more than 10,000 service connections prepare a report by July 1, 2022, if their water quality measurements have exceeded any Public Health Goals (PHGs). The law specifies what information is to be provided in the report (Exhibit A). PHGs are non-enforceable goals established by the California Environmental Protection Agency's (Cal-EPA) Office of Environmental Health Hazard Assessment (OEHHA). The law also requires that where OEHHA has not adopted a PHG for a constituent, the water suppliers are to use the Maximum Contaminant Level Goals (MCLGs) adopted by the United States Environmental Protection Agency (USEPA). Only constituents that have a California primary drinking water standard and for which either a PHG or MCLG has been set are to be addressed. Exhibit B provides a list of all regulated constituents with the MCLs and PHGs.

If a constituent was detected in the District's water supply during the three-year period from calendar year 2019 through 2021 at a level exceeding an applicable PHG or MCLG, this report provides the information required by law. Included is the numerical public health risk associated with the MCL and the PHG or MCLG, the category or type of risk to health that could be associated with each constituent, the best available treatment technology that could be used to reduce the constituent level, and an estimate of the cost to install that treatment if it is appropriate and feasible.

WHAT ARE PUBLIC HEALTH GOALS?

PHGs are set by OEHHA, which is part of Cal-EPA, and are based solely on public health risk considerations. None of the practical risk-management factors that are considered by the USEPA or the State Water Resources Control Board, Division of Drinking Water (DDW) in setting drinking water standards (MCLs) are considered in setting the PHGs. These factors include analytical detection capability, treatment technology availability, costs and benefits. The PHGs are not enforceable and are not required to be met by any public water system. MCLGs are the federal equivalent to PHGs.

WATER QUALITY DATA CONSIDERED

The District receives its water supply from the Metropolitan Water District of Southern California (MWD), Three Valleys Municipal Water District (TVMWD) Miramar Plant, TVMWD Groundwater, and California Domestic Water Company (CDWC). All of the water quality data collected from the District's drinking water system between 2019 and 2021 for purposes of determining compliance with drinking water standards were considered. This data was all summarized in the District's 2019, 2020, and 2021 Annual Water Quality Reports, which are all accessible on the District's website (www.rwd.org/water-quality). Please see Exhibit C for the District's 2019, 2020, and 2021 Annual Water Quality Reports.

GUIDELINES FOLLOWED

The Association of California Water Agencies (ACWA) formed a workgroup that prepared guidelines for water utilities to use in preparing these required reports. The ACWA guidelines were used in the preparation of the District's report.

BEST AVAILABLE TREATMENT TECHNOLOGY AND COST ESTIMATES

Both the USEPA and DDW adopt what are known as Best Available Technologies or BATs, which are the best known methods of reducing contaminant levels to the MCL. Costs can be estimated for such technologies. However, since many PHGs and all MCLGs are set much lower than the MCL, it is not always possible or feasible to determine what treatment is needed to further reduce a constituent downward to or near the PHG or MCLG.

Additionally, estimating the costs to reduce a constituent to zero is difficult, if not impossible, because it is not possible to verify by analytical means that the level has been lowered to zero. In some cases, installing treatment to try to further reduce very low levels of one constituent may have adverse effects on other aspects of water quality.

CONSTITUENTS DETECTED THAT EXCEED A PHG OR A MCLG:

The following is a discussion of constituents that were detected in one or more of our drinking water sources at levels above the PHG, or if no PHG, above the MCLG.

ARSENIC

Arsenic is a naturally-occurring mineral in soils. The PHG for arsenic is 0.004 parts per billion (ppb), and the MCL is 10 ppb. The category of health risk associated with arsenic is that people who drink water containing levels above the MCL throughout their lifetime could experience an increased risk of developing cancer. The numerical health risk for the PHG is one in a million, and the numerical health risk for the MCL is 2.5 per one thousand.

Arsenic was detected at CDWC: in 2019 at levels ranging from 2.0 to 2.9 ppb, in 2020 levels ranged from Not Detected (ND) to 2.6 ppb, and in 2021 levels ranged from ND to 2.7 ppb. The levels detected were below the MCL at all times. The BATs to lower the level of arsenic to below the PHG of 0.004 ppb are ion exchange, reverse osmosis, and coagulation filtration. The estimated cost of treatment with ion exchange is about \$0.60 per 1,000 gallons treated or about \$231,000 per year.

Reverse Osmosis treatment is estimated to cost \$0.94 per 1,000 gallons treated or about \$362,045 per year. Ion Exchange and Reverse Osmosis both concentrate the contaminant so the spent resin or brine may need to be treated as a hazardous waste which will incur more costs for disposal. The estimated cost for coagulation filtration is \$0.45 per 1,000 gallons treated or about \$173,319 per year.

BROMATE

For Bromate, the PHG is 0.1 ppb and the MCL is 10 ppb. The category health risk for Bromate is that some people who drink water containing levels above the MCL over many years could experience an increased risk of developing cancer. The numerical health risk for the PHG is one in a million, and the numerical health risk for the MCL is one per ten thousand.

Bromate was detected in the District's MWD imported water supply in 2019 and 2020. In 2019, Bromate levels ranged from ND to 8.1 ppb, in 2020 Bromate levels ranged from ND to 2 ppb. The levels detected were below the MCL at all times. The most common source of Bromate is as a byproduct of drinking water disinfection through ozonation. The BATs identified to lower Bromate levels to below the MCL are coagulation/filtration optimization, granular activated carbon, reverse osmosis, and ozonation. The estimated cost for these methods of treatment range from \$0.15 to \$8.04 per 1,000 gallons of treated water or an annual cost of \$297,762 to \$15,960,075 per year.

GROSS BETA PARTICLE ACTIVITY

Certain minerals are radioactive and may emit a form of radiation known as photons and beta radiation. There is no PHG for Gross Beta Particle Activity as the OEHHA concluded in 2003 that a PHG for this constituent is not practical. The MCLG set by the USEPA is zero pCi/L and the MCL is 50 pCi/L. The DDW and USEPA, which set drinking water standards, have determined Gross Beta Particle Activity is a health concern at certain levels of exposure. This radiological constituent is a naturally occurring contaminant in some groundwater and surface water supplies. The category of health risk associated with Gross Beta Particle Activity and the reason a drinking water standard was adopted for it, is that some people who drink water containing beta and photon emitters in excess of the MCL over many years may have an increased risk of cancer.

Gross Beta Particle Activity was detected in in 2019, 2020, and 2021 in the District's MWD imported water supply and TVMWD Miramar Plant supply. In 2019, the amount of Gross Beta Particle Activity detected was 1.79 pCi/L in the TVMWD Miramar Plant supply. In 2020, the amount of Gross Beta Particle Activity ranged from ND to 6 pCi/L from the MWD imported water supply and the amount detected for TVMWD Miramar Plant supply was 2.49 pCi/L. In 2021, the amount of Gross Beta Particle Activity detected ranged from 4 pCi/L to 9 pCi/L from the MWD imported water supply and ranged from 3.35 pCi/L to 4.29 pCi/L for the TVMWD Miramar Plant supply. The levels detected in the water supplied to the District were below the MCL at all times, but over the MCLG set by the USEPA.

The BATs identified to treat Gross Beta Particle Activity are activated alumina, coagulation-filtration, ion exchange, and reverse osmosis. The most effective method to consistently remove Gross Beta Particle Activity is to utilize reverse osmosis treatment. The estimated cost for this method of treatment ranges from \$0.94 to \$8.04 per 1,000 gallons of treated water or annual cost of \$2,555,154 to \$21,854,722 per year.

PERCHLORATE

For Perchlorate, the PHG is 1 ppb and the MCL is 6 ppb. The category health risk for Perchlorate and the reason that a drinking water standard was adopted for it, is that some people who drink water containing Perchlorate above the MCL over many years are at a higher risk of developing endocrine toxicity (affects the thyroid) as well as developmental toxicity (causes neurodevelopmental deficits).

Perchlorate was detected in the CDWC supply in 2019, 2020, and 2021. In 2019, Perchlorate levels ranged from ND to 2.1 ppb, in 2020 Perchlorate levels ranged from ND to 3.1 ppb, and in 2021 Perchlorate levels ranged from .57 ppb to 4.4 ppb. The levels detected were below the MCL at all times. The BATs identified to lower Perchlorate levels to below the MCL are ion exchange and reverse osmosis. The most effective method to consistently remove Perchlorate to the MCLG is to utilize reverse osmosis treatment. The estimated cost for this method of treatment ranges from \$0.94 to \$8.04 per 1,000 gallons of treated water or an annual cost of \$362,045 to \$3,096,646 per year.

RADIUM-226

The PHG for Radium 226 is 0.05 pCi/L. This radiological constituent is a naturally occurring contaminant in some groundwater and surface water supplies. The category health risk for Radium-226, is that some people who drink water containing levels above the MCL over many years could experience an increased risk of developing cancer. The numerical health risk for the PHG is one in a million, and the numerical health risk for the MCL is one per ten thousand.

Radium 226 was detected in the District's MWD imported water supply in 2020 with levels ranging from ND to 6 pCi/L and in TVMWD Miramar Plant in 2021 with levels at .88 pCi/L. The levels detected in the District's surface water supplies were below the MCL at all times, but were over the PHG established by DDW. The BATs identified to treat Radium is activated alumina, coagulation-filtration, ion exchange, and reverse osmosis. The most effective method to consistently remove Radium to the PHG is to utilize reverse osmosis treatment. The cost for removing Radium is the same cost as Gross Beta Particle Activity, listed above.

STRONTIUM

Strontium-90 is a result of the decay of natural and man-made deposits. Strontium-90 has a PHG of 0.35 pCi/L and an MCL of 8 pCi/L. The DDW and USEPA have determined that Strontium-90 is a health concern at certain levels of exposure. This radiological constituent is a naturally occurring contaminant in some groundwater and surface water supplies.

The category of health risk associated with Strontium-90, and the reason that a drinking water standard was adopted for it, is that some people who drink water containing Strontium90 in excess of the MCL over many years may have an increased risk of cancer. The numerical health risk for the PHG is one in a million, and the numerical health risk for the MCL is two per hundred thousand.

In 2021, Strontium-90 was detected in the District's TVMWD Miramar Plant water supply. The amount detected in the District's water supply was 0.56 pCi/L. The levels detected in the District's surface water supplies were below the MCL at all times. The BATs identified to treat Strontium-90 are activated alumina, coagulation-filtration, ion exchange, and reverse osmosis. The most effective method to consistently remove Strontium-90 is to utilize reverse osmosis treatment. The cost for removing Strontium-90 is the same cost as Gross Beta Particle Activity, listed above.

TETRACHLOROETHYLENE

Tetrachloroethylene, also known as perchloroethylene (PCE), is a perchlorinated two-carbon olefin. The primary use of PCE is as a chemical intermediate for the production of chlorofluorocarbons and as a solvent used in cleaning operations (metal cleaning, vapor degreasing, and dry cleaning). In addition, numerous household products contain some level of PCE. PCE has a PHG of 0.06 ppb and an MCL of 5 ppb. The category health risk for PCE is that some people who drink water containing levels above the MCL over many years could experience an increased risk of developing cancer. At the PHG, the theoretical cancer risk is one per million people exposed to the PHG level for a lifetime of 70 years. At the MCL, the theoretical cancer risk is eight per one hundred thousand people exposed to the MCL for a lifetime of 70 years.

The PCE value detected in 2021 in CDWC ranged from ND to 0.82 ppb. The BATs for treating PCE include the following treatment techniques: Granular Activated Carbon (GAC) and Packed Tower Aeration. To treat PCE below the PHG a more frequent GAC change-out would be required and the cost impact would be difficult to determine. The cost to treat PCE by Packed Tower Aeration would be \$0.34 to \$1.27. If GAC were selected as the BAT to further reduce PCE an additional cost could range from \$ 0.32 to \$2.71 per 1,000 gallons of water treated. The estimated cost for this method of treatment ranges from \$0.66 to \$3.98 per 1,000 gallons of treated water or an annual cost of \$254,202 to \$1,532,916 per year.

TRITIUM

The PHG for Tritium is 400 pCi/L and the MCL is 20,000 pCi/L. The category health risk for Tritium is that some people who drink water containing levels above the MCL over many years could experience an increased risk of developing cancer. The numerical health risk for the PHG is one in a million, and the numerical health risk for the MCL is five per hundred thousand. Tritium was detected in the water supplied to the District in 2020. In 2020 Tritium was detected in the TVMWD Miramar Plant at 424 pCi/L. The levels detected were below the MCL at all times.

URANIUM

The PHG for Uranium is 0.43 pCi/L and the MCL is 20 pCi/L. This radiological constituent is a naturally occurring contaminant in some groundwater and surface water supplies. The category of health risk associated with Uranium, and the reason that a drinking water standard was adopted for it, is that some people who drink water containing Uranium in excess of the MCL over many years may have an increased risk of cancer. The numerical health risk associated with the PHG is one in one million and the MCL is five per hundred thousand.

Uranium was detected in the water supplied to the District in 2019, 2020, and 2021. In 2019 Uranium was detected in the TVMWD Groundwater water supplies at 2.4 pCi/L and in CDWC levels ranging from 2.3 to 3.2 pCi/L. In 2020, the amount detected in the District's MWD imported water supply ranged from 1 pCi/L to 3 pCi/L and was detected in the CDWC water supply ranging at 2 pCi/L to 3.2 pCi/L. In 2021, the amount of Uranium detected in the District's MWD imported water supply ranged from 1 pCi/L to 3 pCi/L and was detected in the District's MWD imported water supply ranged from 1 pCi/L to 3 pCi/L and was detected in the District's MWD imported water supply ranged from 1 pCi/L to 3 pCi/L and was detected in the TVMWD Groundwater water supplies at 2.2 pCi/L. The levels detected in the District's water supplies were below the MCL at all times, but were over the PHG established by DDW. The BATs identified to treat Uranium are activated alumina, coagulation-filtration, ion exchange, and reverse osmosis. The most effective method to consistently remove Uranium to the PHG is to utilize reverse osmosis treatment. The cost for removing Uranium is the same cost as Gross Beta Particle Activity, listed above.

RECOMMENDATIONS FOR FURTHER ACTION

The District's drinking water quality meets all DDW and USEPA drinking water standards set to protect public health. To further reduce the levels of the constituents identified in this report would require additional costly treatment processes for constituents that are already significantly below the health-based MCLs established to provide "safe drinking water." The effectiveness of the treatment processes to provide any significant reduction in constituent levels at these already low values is uncertain. The health protection benefits of these further hypothetical reductions are not at all clear and may not be quantifiable. Therefore, no action is proposed.

 $\leq \square \times \square$

CA Health & Safety Code Section 116470 (b)

California Health and Safety Code §116470 (b)

On or before July 1, 1998, and every three years thereafter, public water systems serving more than 10,000 service connections that detect one or more contaminants in drinking water that exceed the applicable public health goal, shall prepare a brief written report in plain language that does all of the following:

(1) Identifies each contaminant detected in drinking water that exceeds the applicable public health goal.

(2) Discloses the numerical public health risk, determined by the office, associated with the maximum contaminant level for each contaminant identified in paragraph (1) and the numerical public health risk determined by the office associated with the public health goal for that contaminant.

(3) Identifies the category of risk to public health, including, but not limited to, carcinogenic, mutagenic, teratogenic, and acute toxicity, associated with exposure to the contaminant in drinking water, and includes a brief plainly worded description of these terms.

(4) Describes the best available technology, if any is then available on a commercial basis, to remove the contaminant or reduce the concentration of the contaminant. The public water system may, solely at its own discretion, briefly describe actions that have been taken on its own, or by other entities, to prevent the introduction of the contaminant into drinking water supplies.

(5) Estimates the aggregate cost and the cost per customer of utilizing the technology described in paragraph (4), if any, to reduce the concentration of that contaminant in drinking water to a level at or below the public health goal.

(6) Briefly describes what action, if any, the local water purveyor intends to take to reduce the concentration of the contaminant in public drinking water supplies and the basis for that decision.

(c) Public water systems required to prepare a report pursuant to subdivision (b) shall hold a public hearing for the purpose of accepting and responding to public comment on the report. Public water systems may hold the public hearing as part of any regularly scheduled meeting.

(d) The department shall not require a public water system to take any action to reduce or eliminate any exceedance of a public health goal.

(e) Enforcement of this section does not require the department to amend a public water system's operating permit.

(f) Pending adoption of a public health goal by the Office of Environmental Health Hazard Assessment pursuant to subdivision (c) of Section 116365, and in lieu thereof, public water systems shall use the national maximum contaminant level goal adopted by the United States Environmental Protection Agency for the corresponding contaminant for purposes of complying with the notice and hearing requirements of this section.

(g) This section is intended to provide an alternative form for the federally required consumer confidence report as authorized by 42 U.S.C. Section 300g-3(c).

CA Regulated Constituents

MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants

(Units are in milligrams per liter (mg/L), unless otherwise noted.)

Last Update: September 14, 2021

This table includes:

California's maximum contaminant levels (MCLs)

Detection limits for purposes of reporting (DLRs)

Public health goals (PHGs) from the Office of Environmental Health Hazard Assessment (OEHHA)

Also, the PHG for NDMA (which is not yet regulated) is included at the bottom of this table.

Regulated Contaminant	MCL	DLR	PHG	Date of PHG				
Chemicals with MCLs in 22 (CCR §64431	—Inorganio	c Chemicals	-				
Aluminum	1	0.05	0.6	2001				
Antimony	0.006	0.006	0.001	2016				
Arsenic	0.010	0.002	0.000004	2004				
Asbestos (MFL = million fibers per liter; for fibers >10 microns long)	7 MFL	0.2 MFL	7 MFL	2003				
Barium	1	0.1	2	2003				
Beryllium	0.004	0.001	0.001	2003				
Cadmium	0.005	0.001	0.00004	2006				
Chromium, Total - OEHHA withdrew the 0.0025-mg/L PHG	0.05	0.01	withdrawn Nov. 2001	1999				
Chromium, Hexavalent - 0.01-mg/L MCL & 0.001-mg/L DLR repealed September 2017			0.00002	2011				
Cyanide	0.15	0.1	0.15	1997				
Fluoride	2	0.1	1	1997				
Mercury (inorganic)	0.002	0.001	0.0012	1999 (rev2005)*				
Nickel	0.1	0.01	0.012	2001				
Nitrate (as nitrogen, N)	10 as N	0.4	45 as NO3 (=10 as N)	2018				
Nitrite (as N)	1 as N	0.4	1 as N	2018				
Nitrate + Nitrite (as N)	10 as N		10 as N	2018				
Perchlorate	0.006	0.004	0.001	2015				
Selenium	0.05	0.005	0.03	2010				
Thallium	0.002	0.001	0.0001	1999 (rev2004)				
Copper and Lead, 22 CCR §64672.3								
Values referred to as MCLs for lead and copper are not actually MCLs; instead, they are called "Action Levels" under the lead and copper rule								
Copper	1.3	0.05	0.3	2008				

Radionuclides with MCLs in 22 CCR §64441 and §64443—Radioactivity [units are picocuries per liter (pCi/L), unless otherwise stated; n/a = not applicable]									
[units are picocuries per liter (pCi/L), unless otherwise stated; n/a = not applicable]									
Gross alpha particle activity - OEHHA concluded in 2003 that a PHG was not153nonen/apractical									
Gross beta particle activity - OEHHA concluded in 2003 that a PHG was not practical4 mrem/yr4nonen/a									
Radium-226 1 0.05 2006									
Radium-228 1 0.019 2006									
Radium-226 + Radium-228 5									
Strontium-90 8 2 0.35 2006									
Tritium 20,000 1,000 400 2006									
Uranium 20 1 0.43 2001									
Chemicals with MCLs in 22 CCR §64444—Organic Chemicals									
(a) Volatile Organic Chemicals (VOCs)									
Benzene 0.001 0.0005 0.00015 2001									
Carbon tetrachloride 0.0005 0.0005 0.0001 2000									
1,2-Dichlorobenzene 0.6 0.0005 0.6 1997 (rev2009)									
1,4-Dichlorobenzene (p-DCB) 0.005 0.0005 0.006 1997									
1,1-Dichloroethane (1,1-DCA) 0.005 0.0005 0.003 2003									
1,2-Dichloroethane (1,2-DCA) 0.0005 0.0005 0.0004 1999 (rev2005)									
1,1-Dichloroethylene (1,1-DCE) 0.006 0.0005 0.01 1999									
cis-1,2-Dichloroethylene 0.006 0.0005 0.013 2018									
trans-1,2-Dichloroethylene 0.01 0.0005 0.05 2018									
Dichloromethane (Methylene chloride) 0.005 0.0005 0.004 2000									
1 2-Dichloropropage 0.005 0.0005 1999									
1,2-Dichloropropene 0.0005 0.0005 0.0002 1999 (rev2006)									
Ethylbenzene 0.3 0.0005 0.3 1997									
Methyl tertiary butyl ether (MTBE) 0.013 0.003 0.013 1999									
Monochlorobenzene 0.07 0.0005 0.07 2014									
Styrene 0.1 0.0005 0.0005 2010									
1 1 2 2-Tetrachloroethane 0.001 0.0005 0.0001 2003									
Tetrachloroethylene (PCE) 0.005 0.0005 0.0006 2003									
Toluene 0.15 0.005 0.0000 2001									
124-Trichlorobenzene 0.005 0.000 0.10 1999									
1 1 1-Trichloroethane (1 1 1-TCA) 0.2 0.0005 1 2006									
112-Trichloroethane (112-TCA) 0.005 0.0003 1 2000									
Trichloroethylene (TCE) 0.005 0.005 0.0005 2000									
Trichlorofluoromethane (Freon 11) 0.15 0.005 1.3 2014									

1,1,2-Trichloro-1,2,2-Trifluoroethane	1.2	0.01	4	1997 (rev2011)				
Vinvl chloride	0.0005	0.0005	0.00005	2000				
Xvlenes	1.75	0.0005	1.8	1997				
(b) Non-Volatile Synthetic Organic Chemicals (SOCs)								
Alachlor	0.002	0.001	0.004	1997				
Atrazine	0.001	0.0005	0.00015	1999				
Bentazon	0.018	0.002	0.2	1999 (rev2009)				
Benzo(a)pyrene	0.0002	0.0001	0.000007	2010				
Carbofuran	0.018	0.005	0.0007	2016				
Chlordane	0.0001	0.0001	0.00003	1997 (rev2006)				
Dalapon	0.2	0.01	0.79	1997 (rev2009)				
1,2-Dibromo-3-chloropropane (DBCP)	0.0002	0.00001	0.000003	2020				
2,4-Dichlorophenoxyacetic acid (2,4-D)	0.07	0.01	0.02	2009				
Di(2-ethylhexyl)adipate	0.4	0.005	0.2	2003				
Di(2-ethylhexyl)phthalate (DEHP)	0.004	0.003	0.012	1997				
Dinoseb	0.007	0.002	0.014	1997 (rev2010)				
Diquat	0.02	0.004	0.006	2016				
Endothal	0.1	0.045	0.094	2014				
Endrin	0.002	0.0001	0.0003	2016				
Ethylene dibromide (EDB)	0.00005	0.00002	0.00001	2003				
Glyphosate	0.7	0.025	0.9	2007				
Heptachlor	0.00001	0.00001	0.000008	1999				
Heptachlor epoxide	0.00001	0.00001	0.000006	1999				
Hexachlorobenzene	0.001	0.0005	0.00003	2003				
Hexachlorocyclopentadiene	0.05	0.001	0.002	2014				
Lindane	0.0002	0.0002	0.000032	1999 (rev2005)				
Methoxychlor	0.03	0.01	0.00009	2010				
Molinate	0.02	0.002	0.001	2008				
Oxamyl	0.05	0.02	0.026	2009				
Pentachlorophenol	0.001	0.0002	0.0003	2009				
Picloram	0.5	0.001	0.166	2016				
Polychlorinated biphenyls (PCBs)	0.0005	0.0005	0.00009	2007				
Simazine	0.004	0.001	0.004	2001				
Tevenhene	0.07	0.001	0.042	2016				
	0.003			2003				
2.2.7.9 TCDD (diavin)	2×10-8	0.000000 5v10-9	5×10-11	2009				
2,5,7,6		0.001	0.002	2010				
	0.05	0.001	0.003	2014				
Chemicals with MCLs in 22 CC	R §64533—	Disinfectio	n Byproduct	S				
Total Trihalomethanes	0.080							
Bromodichloromethane		0.0010	0.00006	2020				

Bromoform		0.0010	0.0005	2020					
Chloroform		0.0010	0.0004	2020					
Dibromochloromethane		0.0010	0.0001	2020					
Haloacetic Acids (five) (HAA5)	0.060								
Monochloroacetic Acid		0.0020							
Dichloroacetic Adic		0.0010							
Trichloroacetic Acid		0.0010							
Monobromoacetic Acid		0.0010							
Dibromoacetic Acid		0.0010							
Bromate	0.010	0.0050**	0.0001	2009					
Chlorite	1.0	0.020	0.05	2009					
Chemicals with PHGs established in response to DDW requests. These are not currently regulated drinking water contaminants.									
N-Nitrosodimethylamine (NDMA)			0.000003	2006					
*OEHHA's review of this chemical during the year indicated (rev20XX) resulted in no change in the PHG.									
**The DLR for Bromate is 0.0010 mg/L for analysis performed using EPA Method 317.0 Revision 2.0, 321.8, or 326.0.									

Annual Water Quality Reports: 2019, 2020, 2021

ROWLAND WATER DISTRICT 2019 Annual Water Quality Report

N

Inis report contains important information about your drinking water. Translate it or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alquien que lo entienda bien.

Itong ulat ay may mahalagang impormasyon tungkol sa tubig na iniinom ninyo. Ipasalin ito o kausapin ang isang tao na nakakaintindi nito.

本報告包含有關您飲用水的重要資訊。 將它翻譯為中文或向能夠理解其內容之 人士諮詢。

Phúc trình này có các chi tiết quan trọng về nước uống của quý vị. Hãy dịch ra ngôn ngữ của quý vị hoặc hỏi người hiểu tiếng Anh.

이 보고서는 당신이 마시는 물에 관한 중 요한 정보를 포함합니다. 번역을 하시든지 또는 이를 이해할 수 있 는 분과 상담하십시요.

www.RowlandWater.com

WATER QUALITY

Strict Standards for your Drinking Water

Rowland Water District is committed to providing safe, high guality drinking water to consumers. We continue to maintain a high-level of public confidence by keeping customers well-informed regarding the quality of their water supply while continually working to improve the water treatment process and protect our precious water resources.

Our drinking water is in compliance with all health and safety standards established by the United States Environmental Protection Agency (USEPA) and the State Water Resources Control Board (SWRCB). Each year, the District tests nearly 1,000 water samples for regulated and unregulated contaminants and impurities, and results consistently show that the samples not only meet, but exceed federal standards for drinking water quality.

California water systems are now required to monitor for per- and polyfluoroalkyl substances (PFAS). PFAS is a collective term for a large group of synthetic chemicals that include perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Governor Gavin Newsom recently signed AB 756, which gives the State Water Resources Control Board the authority to require water systems to monitor for the compounds beginning January 1, 2020 with notification levels of 6.5 parts per trillion (ppt) for PFOS and 5.1 ppt for PFOA.

These synthetic contaminants have been detected in some water supplies, particularly around landfills and airports. Although PFAS has not been found in our water supplies above the new notification levels, we will continue to test for these compounds and other impurities, making sure every drop meets the highest drinking water standards in the nation.

The presence of contaminants in drinking water does not necessarily indicate that the water poses a health risk.

Information about water contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

INFORMATION ABOUT YOUR WATER

Water District originally supplied at 6 p.m. on the second Tuesday approximately 58,000 residents in the unincorporated portions of Rowland Heights, La Puente, Hacienda Heights, and the cities of Industry and West Covina.

i

The District is governed by a publicly elected Board of Directors with five members, each representing a specific division of the service area. Maintaining the highest quality and most reliable drinking water supply, as well as establishing District policy and the annual budget, are the Board's primary functions.

Established in 1953, Rowland Board meetings are scheduled office at 3021 Fullerton Road, Rowland Heights, CA 91748. Agendas are posted at the District office 72 hours in advance of the meeting and on the District's website at www.rowlandwater.com.

> Comprehensive water quality reporting is done on an annual basis and describes the sources of potable water, as well as the supply's composition and how it compares to state and federal health and safety standards.

Rowland Water District is

committed to providing safe drinking water and strives to water to about 200 ranchers of each month (unless otherwise maintain the highest level of public and farmers, and now serves *noted*) and held at the District confidence within the community. The District works hard to keep customers well informed on all issues related to water supply, quality and conservation.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE

Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occuring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive contaminants that can be naturallyoccuring or the result of oil and gas production and mining activities. To ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants found in drinking water than the general population. Immuno-compromised persons, such as those with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Rowland Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at *www.epa.gov/safewater/lead*.

2019 SAMPLE RESULTS

For specific questions regarding this report or any additional questions related to District drinking water, please contact Roy Frausto, Engineering & Compliance Manager, at (562) 697-1726 or email info@rowlandwater.com.

Unless otherwise noted, the data presented in this table is from testing completed January 1 - December 31, 2019. The state requires the District to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

11

PRIMARY STANDARDS

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
CLARITY										
Combined Filter Effluent (CFE)	TT	NA	NA	Highest	0.04	0.076	0.20		NTU	Soil Dupoff
Turbidity (a)	TT	NA	NA	% <0.3	100%	100%	100%	ND	%	
MICROBIOLOGICAL										
Total Coliform Bacteria (b) (Total Coliform Rule)	5%	(0)	NA			RWD Distribution System-Wie	de - 0%		%	Naturally present in the environment
Fecal Coliform and E.coli (c) (Total Coliform Rule)	(c)	(0)	NA			RWD Distribution System-Wie	de - 0%		(c)	Human and animal fecal waste
Heterotrophic Plate Count (e)	TT	NA	(1)	Range Average	ND – 1 ND	ND	ND	NC	CFU/mL	Naturally present in the environment
INORGANIC CHEMICALS							•			
Aluminum (d)	1	0.6	0.05	Range	ND – 0.110	ND - 0.100	ND	NC	ppm	Residue from water treatment process;
			0	Average Range	0.122	ND	ND	2.0 – 2.9		Erosion of natural deposits: glass &
	10	.004	2	Average	ND	ND	ND	2.4	ррр	electronics production wastes: runoff
Barium	1	2	0.1	Range Average	ND	ND	ND	0.12 - 0.13 0.125	ppm	Discharge of oil drilling waste and from metal refineries; erosion of natural deposits
Copper (d) (f)	AL=1.3	0.3	0.05		RWD Distribution System-Wide – 35 Samples Collected RWD Distribution System-Wide – 90th Percentile Level = 0.255 RWD Distribution System-Wide – Samples Exceeding Action Level = 0					Internal corrosion of household pipes; erosion of natural deposits
Fluoride	2	1	0.1	Range Average	0.6 - 0.9	ND	0.41 – 0.59	0.26 - 0.27	ppm	Erosion of natural deposits; water additive that promotes strong teeth
Lead (f)	AL=15	0.2	5		RWD Distribution System-Wide – 35 Samples Collected RWD Distribution System-Wide – 90th Percentile Level = ND RWD Distribution System-Wide – Samples Exceeding Action Level = 0				ppb	Internal corrosion of household pipes; erosion of natural deposits
Nitrate (as N)	10	10	0.4	Range Average	0.5	ND	1.6 – 3.5 2.56	<u>3.3 – 5.3</u> 4	ppm	Runoff and leaching from fertilizer use; sewage; erosion of natural deposits
Nitrate + Nitrite (as N)	10	NA	NA	Range Average	NC	NC	NC	4	ppm	Runoff and leaching from fertilizer use; sewage; erosion of natural deposits
Pereblarata (CIQ4)	c	1	4	Range				ND – 2.1	nnh	Industrial waste discharge
	0		4	Average	ND	ND	ND	1.3	ρρο	industrial waste discharge

PRIMARY STANDARDS (Continued)

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
VOLATILE ORGANIC CON	ITAMINA	NTS								
Tetrachloroethylene (PCE)	5	0.06	0.5	Range				ND – 0.60	daa	Discharge from factories, dry cleaners, and auto shops
	_			Average	ND	ND	ND	0.05	I P P P	
Toluene	150	150	0.5	Range	0.6		ND	ND	ppb	Discharge from petroleum and chemical refineries
	-			Range	0.0			ND – 1 1		
Trichloroethylene (TCE)	5	1.7	0.5	Average	ND	ND	ND	0.56	ppb	Discharge from metal degreasing sites and other factories
RADIOLOGICALS							•			
Gross Rota Particle Activity (b)	50	(0)	4	Range					nCi/l	Decay of natural and man made denosite
		(0)	4	Average	ND	1.79	NR	NC	poi/L	Decay of hatural and man-made deposits
Combined Radium	5	(0)	NA	Range	ND	ND (2015)	0.149 (2016)	NC	pCi/L	Erosion of natural deposits
	_			Range		100 (2013)	0.140 (2010)	INC.		
Radium 226	NA	0.05	1	Average	ND	ND (2015)	0.147 (2016)	NC	pCi/L	Erosion of natural deposits
Radium 228	NA	0.019	1	Range		, , , , , , , , , , , , , , , , , , ,	· · /		nCi/l	Frosion of natural denosits
		0.010		Average	ND	ND (2015)	0.001 (2016)	NC	p01/L	
Strontium-90	8	0.35	2	Range	ND	0.12	ND	NC	pCi/L	Decay of natural and man-made deposits
	_			Average		0.13	INR	NC		
Tritium	20,000	400	1,000		ND	377	NR	NC	ppb	Decay of natural and man-made deposits
	-			Range		011		23-32		
Uranium	20	0.43	1	Average	ND	ND (2018)	2.4 (2017)	2.8	pCi/L	Erosion of natural deposits
DISINFECTION BY-PROD	UCTS. DI	SINFECT	ANT R	ESIDUAL	S. AND DISINFECTIO	N BY-PRODUCTS P	RECURSORS			
				Range	ND – 81					
Bromate (k)	10	0.1	1.0	Average	1.9	NA	NA	NC	ppm	Byproduct of drinking water disinfection
Total Tribalamathanaa (TTUM) (k)		NIA	1	Range		RWD Distribution System-W	/ide - 1.0-48.4	-		Dy product of deviation water disinfection
	00	NA	1	Average		RWD Distribution System	-Wide - 31.53		ррп	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (k)	60	NA	1	Average		RWD Distribution System-V	Vide – 1.1 – 15.2		ppm	By-product of drinking water disinfection
	_			Range		RWD Distribution System-W	-Wide - 212-263			
Total Chlorine Residual	[4]	[4]	NA	Average		RWD Distribution System	n-Wide – 2.45		ppm	Drinking water disinfectant added for treatment
Total Organic Carbon (TOC)	тт	ΝΔ	0.30	Range	1.7 – 2.6	1.07 – 1.16			nnm	Various natural and man-made sources; TOC as a medium for the formation of
	11	N/A	0.50	Average	2.4	1.12	ND	NC	ррш	disinfection byproducts.
SECONDARY S	TAND	DARDS	5 - A	ESTHE	TIC STANDAR	RDS				
						ND 400				
Aluminum (d)	200	600	50	Range	ND – 110	ND - 100	ND	ND	ppb	Erosion of natural deposits; residual from some surface water treatment processes
				Average		NU				
Chloride	500	NA	(2)	Average	40 – 00 50	7/	0.0-9.0 8 3	20 - 24	ppm	Runoff / leaching from natural deposits; seawater influence
		The second		Tiverage	50		0.0		Contraction of the local division of the loc	

SECONDARY STANDARDS - AESTHETIC STANDARDS (Continued)

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
Color	15	NA	(1)	Range	ND – 1	1	ND	ND	Units	Naturally occurring organic materials
Copper (d) (f)	1	0.3	0.05	Average	RWI RWD D RWD Distri	D Distribution System-Wide – istribution System-Wide – 90 bution System-Wide – Samp	35 Samples Collected th Percentile Level = 0 les Exceeding Action L	d .255 .evel = 0	ppm	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Foaming Agents-MBAS	500	NA	(50)	Range Average	ND	0.11	ND	ND	ppb	Municipal and industrial waste discharges
Iron	300	NA	100	Range Average	243	ND	ND	ND	ppb	Leaching from natural deposits: industrial wastes
Odor Threshold (i)	3	NA	1	Range Average	1	1	1	1	TON	Naturally occurring organic materials
Specific Conductance	1,600	NA	NA	Range Average	435 – 503 469	300 – 440 370	380 – 410 395	490	µS/cm	Substances that form ions when in water; seawater influence
Sulfate	500	NA	0.5	Range Average	65 – 81 73	32	25 – 31 28	40 – 47 44	ppm	Runoff / leaching from natural deposits; industrial wastes
Total Dissolved Solids (TDS)	1,000	NA	(2)	Range Average	<u> 224 – 289 </u>	250	210 – 230 220	290 – 300 295	ppm	Runoff / leaching from natural deposits; seawater influence
OTHER PARAMETERS										
GENERAL MINERALS										
Alkalinity	NA	NA	(1)	Range Average	67 – 70 68	60 – 77 68.5	150 – 160 155	170	ppm	Measure of water quality
Bicarbonate (HCO3)	NA	NA	NA	Range Average	NC	NC	NC	210	mg/L	Naturally occurring from organic materials
Calcium	NA	NA	(0.1)	Range Average	23 – 27 25	15 – 19 17	51 – 52 51.5	66 - 67 67	ppm	Measure of water quality
Magnesium	NA	NA	(0.01)	Range Average	11 – 12 12	11	1.5 – 8.6 8.05	12 – 13 12.5	ppm	Measure of water quality
Potassium	NA	NA	(0.2)	Range Average	2.2 – 2.7	1.8	1.4	3.6	ppm	Measure of water quality
Sodium	NA	NA	(1)	Range Average	46 – 54 50	49	13 – 22 17.5	17 – 18 17.5	ppm	Measure of water quality
Total Hardness (as CaCO3)	NA	NA	(1)	Range Average	101 – 116 108	95	160 – 170 165	220	ppm	Measure of water quality
Total Hardness (Grains per Gallon)	NA	NA	NA	Range Average	5.91 - 6.78 6.32	5.56	9.36 - 9.94 9.65	12.87	gpg	Measure of water quality
UNREGULATED CONTAMI	NANTS		-							
Boron	NL=1000	NA	100	Range Average	120	120 – 160 140	150	ND	ppb	Runoff / leaching from natural deposits; industrial wastes
Chlorate	NL=800	NA	20	Range	42	ND	NR	NC	ppb	By-product of drinking water chlorination; industrial processes
Chromium VI	NA	0.02	1	Range Average	ND	ND	ND	2.6 - 2.8	ppb	Runoff/leaching from natural deposits; discharge from industrial waste factories

13

OTHER PARAMETERS (Continued)

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
MISCELLANEOUS										
Calcium Carbonate Precipitation Potential (CCPP) (I)	NA	NA	NA	Range Average	<u>1.1 – 7.3</u> 2.6	NR	NR	NC	ppm	Elemental balance in water; affected by temperature, other factors
Corrosivity (Aggressiveness Index)(g)	NA	NA	NA	Range Average	12.1 – 12.2 12.1	11.46	NR	12.01 – 12.53 12.27	AI	Elemental balance in water; affected by temperature, other factors
Corrosivity (j) (as Saturation Index)	NA	NA	N/A	Range Average	0.34 – 0.38 0.36	-0.33	NR	0.15 – 0.68 0.62	SI	Elemental balance in water; affected by temperature, other factors
рН	NA	NA	N/A	Range Average	8.5	8.58	7.9 – 8.2 8.1	7.6 – 8.1 7.9	pH units	Measure of water quality

DEFINITION OF TERMS

AI	Aggressiveness Index
AL	Action Level
Average	Average value of all samples collected
CaCO3	Calcium Carbonate
ССРР	Calcium Carbonate Precipitation Potentia
CDWC	California Domestic Water Company
CFE	Combined Filter Effluent
CFU	Colony-Forming Units
DLR	Detection Limits for Purposes of Reportin
HAA5	Sum of five haloacetic acids
НРС	Heterotrophic Plate Count
LRAA	Locational Running Annual Average
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MFL	Million Fibers per Liter

<u>Abr</u>

MRDL	Maximum Residual Disinfectant Level
MRDLG	Maximum Residual Disinfectant Level Goal
MWD	Metropolitan Water District of Southern California
NA	Not Applicable
NC	Not Collected
NR	Not Required
ND	Not Detected at or above DLR or RL
NL	Notification Level to SWRCB
NTU	Nephelometric Turbidity Units
pCi/L	picoCuries per Liter
PHG	Public Health Goal
ppb	parts per billion or micrograms per liter (μg/L)
ppm	parts per million or milligrams per liter (mg/L)

ррզ	parts per quadrillion or picograms per liter (pg/L)
RAA	Running Annual Average
Range	Lowest to highest sampling results
RL	Reporting Limit
SI	Saturation Index (Langelier)
SWRCB	State Water Resources Control Board
TDS	Total Dissolved Solids
TON	Threshold Odor Number
π	Treatment Technique is a required process intended to reduce the level of a contaminate in drinking water
ттнм	Total Trihalomethanes
TVMWD	Three Valleys Municipal Water District

GLOSSARY

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Running Annual Average (RAA): Highest RAA is the highest of all Running Annual Averages calculated as an average of all within a 12-month period.

LRAA: Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12 month period.

- (a) Metropolitan and Three Valleys MWD monitor turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- (b) Results are based on Rowland Water District's distribution system's highest monthly percent positives. 954 samples were analyzed in 2019. The highest monthly percentage was 0%. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive.
- (c) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. coli-positive or the system fails to take repeat samples following an E. colipositive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli. The MCL was not violated.
- (d) Aluminum and Copper have both primary and secondary standards.
- (e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan and Three Valleys MWD monitors HPCs to ensure treatment process efficacy.
- (f) Lead and Copper samples are required to be collected once every three years during the months of June September. Sample results are from 2018.

- (g) Al ≥ 12.0 = Non-aggressive water; Al 10.0-11.9 = Moderately aggressive water; Al ≤ 10.0 = Highly aggressive water. Reference: ANSI/ AWWA Standard C400-93 (R98)
- (h) Gross beta particle activity MCL is 4 millirem/ year annual dose equivalent to the total body or any internal organ. 50 pCi/L is used as a screening level.
- Compliance with odor threshold secondary MCL is based on RAA. Treatment plants begin quarterly monitoring if annual monitoring results are above 3.
- (j) SI measures the tendency for a water to precipitate or dissolve calcium carbonate (a natural mineral in water). Water with SI <-2.0 is highly corrosive and would be corrosive to almost all materials found in a typical water system. SI between -2.0 to 0 indicates a balanced water and SI >0.5 is scale forming.
- (k) RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.
- Positive CCPP = non corrosive; tendency to precipitate and/or deposit scales on pipe. Negative CCPP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM 2330)

Rowland Water District 3021 Fullerton Road

Rowland Heights, CA 91748 (562) 697-1726

For questions or more information about this report, please contact Roy Frausto, Engineering & Compliance Manager at (562) 697-1726, or visit us online at www.RowlandWater.com

OFFICE HOURS: Monday - Thursday 8 a.m. to 5:30 p.m.

Friday 8 a.m. to 4:30 p.m. Closed on alternating Fridays

AFTER HOURS Emergency Service: (562) 697-1726

Our Mission

Bound by our core values – Accountability, Communication and Teamwork – we are committed to providing the highest level of service to our customers

Board of Directors

Robert W. Lewis - Division IV	Anthony J. Lima - Division II	Szu Pei Lu-Yang - Division V
President	Director	Director
Teresa P. Rios - Division I	John E. Bellah - Division III	Tom Coleman
Vice President	Director	General Manager

www.RowlandWater.com

2020 ANNUAL Water Quality

REPORT

Published June 2021

1000

KNOW YOUR WATER

This report contains important information about your drinking water. Translate it or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien.

Itong ulat ay may mahalagang impormasyon tungkol sa tubig na iniinom ninyo. Ipasalin ito o kausapin ang isang tao na nakakaintindi nito.

本報告包含有關您飲用水的重要資訊。 將它翻譯為中文或向能夠理解其內容之 人士諮詢。

Phúc trình này có các chi tiết quan trọng về nước uống của quý vị. Hãy dịch ra ngôn ngữ của quý vị hoặc hỏi người hiểu tiếng Anh.

이 보고서는 당신이 마시는 물에 관한 중 요한 정보를 포함합니다. 번역을 하시든지 또는 이를 이해할 수 있 는 분과 상담하십시요.

RowlandWater.com

YOUR WATER

Established in 1953, Rowland Water District originally supplied water to about 200 ranchers and farmers, and now serves approximately 58,000 people in parts of Rowland Heights, La Puente, Hacienda Heights, and the cities of Industry and West Covina.

The District is governed by a publicly elected Board of Directors with five members, each representing a specific division of the service area. Maintaining the highest quality and most reliable drinking water supply, as well as establishing District policy and the annual budget, are the Board's primary functions.

Board meetings are scheduled for the second Tuesday of each month (unless otherwise noted) and held at the

District office at 3021 Fullerton Road, Rowland Heights, CA 91748. Board meetings begin at 5 p.m. Agendas are posted at the District office 72 hours in advance of the meeting and on the District's website at **www.rowlandwater.com/agendas-minutes**.

Comprehensive water quality reporting is done on an annual basis and describes the sources of potable water, as well as the supply's composition and how it compares to state and federal health and safety standards.

Rowland Water District is committed to providing safe drinking water and strives to maintain the highest level of public confidence within the community. The District is committed to keeping customers well informed on all issues related to water supply, quality and conservation.

SOURCES OF WATER

In December 2002, Metropolitan Water District completed a source water assessment of its Colorado River and State Water Project supplies. Colorado River water is considered to be most vulnerable to the effects of recreation, urban and stormwater runoff, increasing urbanization in the watershed, and wastewater. The State Water Project is considered to be most vulnerable to the effects of urban and stormwater runoff. wildlife, agriculture, recreation, and wastewater. A copy of the assessment can be obtained by contacting Metropolitan Water District at (213) 217-6000. In addition to these sources. Rowland Water District stores supplemental groundwater in the Main San Gabriel Basin and Central Basin.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's (U.S. EPA's) Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground it dissolves naturally occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER

Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive contaminants that can be naturally occurring or the result of oil and gas production and mining activities.

To ensure that water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants found in drinking water than the general population. Immuno-compromised persons, such as those with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Rowland Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in household plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at *www.epa.gov/lead*.

2020 SAMPLE RESULTS

For specific questions regarding this report or any additional questions related to District drinking water, please contact Dusty Moisio, Director of Operations, at (562) 697-1726 or email info@rowlandwater.com.

Unless otherwise noted, the data presented in this table is from testing completed January 1 - December 31, 2020. The state requires the District to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

PRIMARY STANDARDS

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water	
CLARITY											
Combined Filter Effluent (CFE)	TT	NA	NA	Highest	0.04	0.073	0.790		NTU		
Turbidity (a)	TT	NA	NA	% <0.3	100%	100%	100%	ND	%	Soil Runoff	
MICROBIOLOGICAL											
Total Coliform Bacteria (b) (Total Coliform Rule)	5%	(0)	NA		RI	ND Distribution System-W	/ide – 0%		%	Naturally present in the environment	
Fecal Coliform and E.coli (c) (Total Coliform Rule)	(c)	(0)	NA		R	ND Distribution System-W	/ide - 0%		(c)	Human and animal fecal waste	
Heterotrophic Plate Count (e)	TT	NA	(1)	Range Average	ND	ND	ND	NC	CFU/mL	Naturally present in the environment	
INORGANIC CHEMICALS											
Aluminum (d)	1000	600	50	Range	80 – 210				nnh	Residue from water treatment process;	
	1000	000	00	Average	149	ND	ND	NC	-	natural deposits; erosion	
Arsenic	10	.004	2	Average	ND	ND	ND	2.2	ppb	Erosion of natural deposits: glass & electronics production wastes: runoff	
Desire	1000	2000	100	Range				120 – 130		Discharge of oil drilling waste and	
Barium	1000	2000	100	Average	105	ND	ND	125	ррр	from metal refineries; erosion of natural deposits	
Copper (d) (f)	AL=1.3	0.3	0.05		RWD Distribution System-Wide – 35 Samples Collected RWD Distribution System-Wide – 90th Percentile Level = 0.255 RWD Distribution System-Wide – Samples Exceeding Action Level = 0					Internal corrosion of household pipes; erosion of natural deposits	
Flueride (m)	0	4	0.1	Range	0.6 – 0.8	ND – 0.11	0.38 – 0.56	0.28 - 0.32	-	Erosion of natural deposits; water	
	2	ļ	0.1	Average	0.7	0.055	0.47	0.3	ррп	additive that promotes strong teeth	
Lead (f)	AL=15	0.2	5		RWD Distri RWD Distribu RWD Distribution	RWD Distribution System-Wide – 35 Samples Collected RWD Distribution System-Wide – 90th Percentile Level = ND RWD Distribution System-Wide – Samples Exceeding Action Level = 0					
	10	40	0.4	Range		ND – 0.57	2.2 – 2.8	3.1 – 4.6	-	Runoff and leaching from fertilizer	
	10	10	0.4	Average	ND	0.285	2.57	3.7	ppm	deposits	
Nitrate + Nitrite (as N)	10	NA	NA	Range				3.1 – 3.7	nnm	Runoff and leaching from fertilizer	
	10			Average	NC	NC	NC	3.4	- ppm	deposits	
Perchlorate (CIO4)	6	1	4	Range				ND – 3.1	ppb	Industrial waste discharge	
· · · /				Average	ND	ND	ND	1.6			

PRIMARY STANDARDS (Continued)

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
VOLATILE ORGANIC C	ONTAR	MINANT	S							
Tetrachloroethylene (PCE)	200	1.7	10	Range Average	ND	ND	0.029	NC	ppt	Banned nematicide that may still be present in soils due to runoff/ leaching
Tetrachloroethylene (PCE)	5	0.06	0.5	Range Average	ND	ND	ND	ND	ppb	Discharge from factories, dry cleaners, and auto shops
Toluene	150	150	0.5	Range Average	ND	ND	ND	ND	ppb	Discharge from petroleum and chemical refineries
Trichloroethylene (TCE)	5	1.7	0.5	Range Average	ND	ND	ND	ND – 1.1 0.73	ppb	Discharge from metal degreasing sites and other factories
RADIOLOGICALS										
Gross Beta Particle Activity (h)	50	(0)	4	Range Average	ND – 6 4	2.49	NR	NC NC	pCi/L	Decay of natural and man-made deposits
Combined Radium	5	(0)	NA	Range Average	ND – 6 4	ND (2015)	0.148 (2016)	NC	pCi/L	Erosion of natural deposits
Radium 226	NA	0.05	1	Range Average	ND – 6 4	ND (2015)	0.147 (2016)	NC	pCi/L	Erosion of natural deposits
Radium 228	NA	0.019	1	Range Average	ND – 2 ND	ND (2015)	0.001 (2016)	NC	pCi/L	Erosion of natural deposits
Strontium-90	8	0.35	2	Range Average	ND	0.16	NR	NC	pCi/L	Decay of natural and man-made deposits
Tritium	20,000	400	1,000	Range Average	ND	424	NR	NC	pCi/L	Decay of natural and man-made deposits
Uranium	20	0.43	1	Range Average	1 – 3 2	ND (2018)	2.4 (2017)	2 – 3.2 2.7	pCi/L	Erosion of natural deposits
DISINFECTION BY-PRO	DUCT	S, DISIN	IFECTA	NT RESI	DUALS, AND DISI	NFECTION BY-PR	ODUCTS PRE	CURSORS		
Bromate (k)	10	0.1	1.0	Range Average	2	NA	NA	NC	ppb	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) (k)	80	NA	1	Range Average	F	RWD Distribution System- RWD Distribution System	Wide - 4.4 - 36.1 n-Wide - 21.94	·	ppb	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (k)	60	NA	1	Average Highest	F	RWD Distribution System- RWD Distribution System	Wide - 1.6 - 16.4 m-Wide - 9.16	ppb	By-product of drinking water disinfection	
Total Chlorine Residual	[4]	[4]	NA	Range Average	R	WD Distribution System-V RWD Distribution System	Vide - 2.46 - 2.77 m-Wide - 2.64	ppm	Drinking water disinfectant added for treatment	
Total Organic Carbon (TOC)	TT	NA	0.30	Range	2.1-2.6	1.8-2.6	ND	NC	ppm	Various natural and man-made sources; TOC as a medium for the formation of disinfection by-products.
				Average	2.4	Z.1	טא	NC		

SECONDARY STANDARDS - AESTHETIC STANDARDS

Parameter	State MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (LHHCWD)	Units	Major Sources in Drinking Water		
Aluminum (d)	200	600	50	Range	149				bob	Erosion of natural deposits; residual from some surface water treatment		
(2)				Average	Highest RAA	ND	ND	ND	p p a	processes		
Chloride	500	NΔ	(2)	Range			5.8 – 7.1	19 – 20	Unite	Residue from water treatment processes: natural deposits erosion		
			(2)	Average	93	62	6.45	19.5	Onito			
Color	15	NA	(1)	Range		ND – 5.0			Units	Naturally occurring organic materials		
			(')	Average	1	2.5	ND	ND	Onito			
Copper (d) (f)	1	0.3	0.05		RWD D RWD Distri RWD Distributi	istribution System-Wide - bution System-Wide – 9 on System-Wide – Samp	 35 Samples Colle 25 Samples Colle 26 Des Exceeding Action 	ppm	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			
Ecoming Agents MBAS	500	NΙΔ	(50)	Range					pph	Municipal and industrial waste discharges		
	500		(50)	Average	ND	ND	ND	ND	hhn	manoparana nadotna mate alonargoo		
Iron	300	ΝΔ	100	Range					nnh	Leasting from potential dependencial violation		
	500		100	Average	ND	ND	ND	ND	hhn	Leading nom natural deposits. Industrial wastes		
Odor Throshold (i)	3	NΙΔ	1	Range		1 – 2			TON	Naturally occurring organic materials		
	J		I	Average	2	1.5	1	1	TON			
Spacific Conductores	1 600		NIA	NIA	NIA	Range	963 - 968	420 - 440	390 – 450	480 - 490	uClom	Substances that form ions when in water, accurater influence
Specific Conductance	1,000	IN/A	INA	Average	966	430	416.67	485	μο/οπ			
Sulfata	500	NIA	0.5	Range	211 – 215	32 – 41	21 – 28	41 – 42	0.000	Bunoff / loophing from natural deposite: industrial wester		
Sultate 500	IN/A	0.5	Average	213	36.5	24.5	41.5	ррш	Runoff / leaching from natural deposits; industrial wastes			
Tatal Dissolved Calida (TDC)	(TDO) 4 000		(2)	Range	587 – 593		240 – 260	280 – 310		Dunoff / loophing from notivel deposite approximates influence		
Total Dissolved Solids (TDS)	1,000	NA	(2)	Average	590	250	250	295	ррш	Runon / leaching from natural deposits, seawater miluence		

OTHER PARAMETERS

GEN	MIN	EDAI	C
ULIN			

Alkalinity	NA	NA	(1)	Range	118 – 119	68 - 88	100	470	ppm	Measure of water quality	
				Average	118	80.6	160	170			
Ricarbonate (HCO3)	NA	NA	NA	Range					ma/l	Naturally occurring from organic materials	
	1.0.1	101	Average	NC	NC	NC	200	mg/L			
Coloium	NIA	NIA	(0.4)	Range		21 – 23	55 – 57			Macaura of water quality	
Calcium	INA	INA	(0.1)	Average	65	22	56	65	ррт		
Magnaaium	NIA	NIA	(0.01)	Range		7.7 – 11	8.4 - 8.7		0000	Measure of water quality	
Magnesium	NA NA	INA	(0.01)	Average	26	9.35	8.55	12	. ppm	measure of water quality	
Perfluooroctanesulfonic acid	NL =	NIA	17	Range				ND – 2.5	nnh	Discharge from manufacturing facilities	
(PFOS)	6.5	INA	1.7	Average	NC	NC	NC	0.83	hhn	Disonarge from manufacturing facilities	
Potossium	NIA	NIA	(0.2)	Range	4.5 – 4.6	2.0 – 2.4	1.4 – 1.7		0000	Mocours of water quality	
Polassium	INA	INA	(0.2)	Average	4.6	2.2	1.55	3.2	ррт	Nieasure of water quality	
Codium	NIA	NA	(1)	Range	93 – 97	48 – 50	13 – 23	16 – 17	0000	Mocours of water quality	
Soulum	INA	INA	(1)	Average	95	49	18	16.5	ppm	ineasure of water quality	
Tatal Hardness (as CaCO2)	NIA	NIA	(1)	Range	256 – 268		170 – 180			Measure of water swelity	
Iotal Hardness (as CaCOS)	INA	INA	(1)	Average	262	97	175	210	ррт	measure of water quality	
Total Hardness (Grains per	NIA	NIA	NIA	Range	14.97 – 15.67		9.94 – 10.53		670 G	Macours of uptor quality	
Gallon)	NA	NA	NA	Average	15.32	5.67	10.23	12.28	gpg		

OTHER PARAMETERS (Continued)

Parameter	State MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (LHHCWD)	Units	Major Sources in Drinking Water					
UNREGULATED CONTA	UNREGULATED CONTAMINANTS														
Boron	NII =1000	NΔ	100	Range		150 – 220	ND – 160		nnh	Runoff / leaching from natural denosits: industrial wastes					
	NL-1000		100	Average	130	180	80	ND	ρρυ						
Chlorate	NI =800	NA	20	Range					nnh	By-product of drinking water chlorination: industrial processes					
	NL-000			Average	76	NR	NR	NC	ρρυ	by-product of drinking water chlorination, industrial processes					
Chromium VI	NA	0.02	1	Range				2.5 – 2.7	nnh	Runoff/leaching from natural deposits; discharge from industrial waste					
	147.4	0.02	'	Average	ND	ND	ND	2.6	ppp	factories					
MISCELLANEOUS															
Calcium Carbonate Precipitation	NIA	NIA	NIA	Range	3.3 – 9.9	NR	NR	NC		Flamontal balance in water, effected by temperature, ether factors					
Potential (CCPP) (I)	INA	NA	NA	Average	7.4				ррп	Elemental balance in water, anected by temperature, other factors					
Corrosivity	NIA	NIA	NIA	Range				12.27 – 12.48	A1	Flamental balance in water, effected by temperature, ether factors					
(Aggressiveness Index)(g)	INA	NA	INA	Average	12.4	12.26	NR	12.38	AI	Elemental balance in water, anected by temperature, other factors					
Corrosivity (j)	NIA	NIA	N1/A	Range	0.48 – 0.65			0.42 – 0.66	CI.						
(as Saturation Index)	NA	NA	N/A	Average	0.56	0.36	NR	0.54	51	Elemental balance in water; affected by temperature, other factors					
-11	NIA	NIA		Range		8.2 - 8.6 8.0 - 8.5 7.8 - 8.1			Manager						
рН	NA	NA	N/A	Average	8.1	8.43	8.1	8.0	pH units	Measure of water quality					

Abr

DEFINITION OF TERMS

AI	Aggressiveness Index	LRA
AL	Action Level	мс
Average	Average value of all samples collected	мс
CaCO3	Calcium Carbonate	
ССРР	Calcium Carbonate Precipitation Potential	MR
CDWC	California Domestic Water Company	MR
CFE	Combined Filter Effluent	
CFU	Colony-Forming Units	MM
DLR	Detection Limits for Purposes of Reporting	NA
HAA5	Sum of five haloacetic acids	NC
НРС	Heterotrophic Plate Count	NR

.RAA	Locational Running Annual Average
NCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MFL	Million Fibers per Liter
MRDL	Maximum Residual Disinfectant Level
MRDLG	Maximum Residual Disinfectant Level Goal
MWD	Metropolitan Water District of Southern California
A	Not Applicable
NC	Not Collected
NR	Not Required

ND	Not Detected at or above DLR or RL	Range
NL	Notification Level to SWRCB	RL
NTU	Nephelometric Turbidity Units	SI
pCi/L	PicoCuries per Liter	SWRCD
PHG	Public Health Goal	TDS
ppb	Parts per billion or micrograms per liter (µg/L)	TON TT
ppm	Parts per million or milligrams per liter (mg/L)	
ppq	Parts per quadrillion or picograms per liter (pg/L)	ттнм
RAA	Running Annual Average	TVMWD

Range	Lowest to highest sampling results
RL	Reporting Limit
SI	Saturation Index (Langelier)
SWRCB	State Water Resources Control Board
TDS	Total Dissolved Solids
ΤΟΝ	Threshold Odor Number
тт	Treatment Technique is a required process intended to reduce the level of a contaminate in drinking water
	Iotal Irinalomethanes
TVMWD	Three Valleys Municipal Water District

GLOSSARY

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Running Annual Average (RAA): Highest RAA is the highest of all Running Annual Averages calculated as an average of all within a 12-month period.

LRAA: Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12 month period.

- (a) Metropolitan and Three Valleys MWD monitor turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- (b) Results are based on Rowland Water District's distribution system's highest monthly percent positives. 936 samples were analyzed in 2020. The highest monthly percentage was 0%. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive.
- (c) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. colipositive or the system fails to take repeat samples following an E. colipositive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli. The MCL was not violated.
- (d) Aluminum and Copper have both primary and secondary standards.
- (e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan and Three Valleys MWD monitor HPCs to ensure treatment process efficacy.
- (f) Lead and Copper samples are required to be collected once every three years during the months of June - September. Sample results are from 2018.
- (g) AI ≥ 12.0 = Non-aggressive water; AI10.0-11.9 = Moderately aggressive water; AI ≤ 10.0 = Highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98)

- (h) Gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. 50 pCi/L is used as a screening level.
- (i) Compliance with odor threshold secondary MCL is based on RAA. Treatment plants begin quarterly monitoring if annual monitoring results are above 3.
- (j) SI measures the tendency for a water to precipitate or dissolve calcium carbonate (a natural mineral in water). Water with SI <-2.0 is highly corrosive and would be corrosive to almost all materials found in a typical water system. SI between -2.0 to 0 indicates a balanced water and SI >0.5 is scale forming.
- (k) RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.
- Positive CCPP = non corrosive; tendency to precipitate and/or deposit scales on pipe. Negative CCPP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM 2330)
- (m) Metropolitan was in compliance with all provisions of the State's fluoridation system requirements. Fluoride feed systems were temporarily out of service during treatment plant shutdowns and/ or maintenance work in 2020, resulting in occasional fluoride levels below 0.7 mg/L. TVMWD does not have fluoride feed systems and all fluoride results are naturally occurring.

Rowland Water District

3021 Fullerton Road Rowland Heights, CA 91748 (562) 697-1726

For questions or more information about this report, please contact Dusty Moisio, Director of Operations, at (562) 697–1726, or visit us online at www.RowlandWater.com

OFFICE HOURS: Monday - Thursday 7 a.m. to 4:30 p.m.

Friday 7 a.m. to 3:30 p.m. Closed on alternating Fridays

AFTER HOURS Emergency Service: (562) 697-1726

RowlandWater.com

Our Mission

Vice President

Bound by our core values – Accountability, Communication and Teamwork – we are committed to providing the highest level of service to our customers.

Board of Directors

Anthony J. Lima - Division II President Szu Pei Lu-Yang - Division V John E. Bellah - Division III Director

Robert W. Lewis - Division IV Director Vanessa Hsu - Division I Director

Tom Coleman General Manager **Rowland Water District's**

2021 ANNUAL Ware Quality

REPORT

Published June 2022

KNOW YOUR WATER

This report contains important information about your drinking water. Translate it or speak with someone who understands it. Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien. 此報告中包含有關您的 飲用水的重要資訊。您 可請求翻譯或與能夠讀 懂此報告的人交談。 해당 보고서에는 식수에 대한 중요한 정보가 포함되어 있습니다. 내용을 이해하는 사람이 번역하거나 혹은 그러한 사람과 의논해 주십시오. Naglalaman ang ulat na ito ng mahalagang impormasyon tungkol sa iyong inuming tubig. Isalin ito o makipag-usap sa isang taong nakauunawa rito.

Báo cáo này có các thông tin quan trọng về nước uống của quý vị. Mãy biên dịch báo cáo hoặc thảo luận với người hiểu được báo cáo.

RWD.org

INFORMATION ABOUT YOUR WATER

Established in 1953, Rowland Water District originally supplied water to about 200 ranchers and farmers, and now serves approximately 60,000 people in parts of Rowland Heights, La Puente, Hacienda Heights, and the cities of Industry and West Covina.

The District is governed by a publicly elected Board of Directors with five members, each representing a specific division of the service area. Maintaining the highest quality and most reliable drinking water supply, as well as establishing District policy and the annual budget, are the Board's primary functions.

Board meetings are scheduled for the second Tuesday of each month (unless otherwise noted) and held at the District office at: 3021 Fullerton Road, Rowland Heights, CA 91748.

Board meetings begin at 6:00 p.m. Agendas are posted at the District office

72 hours in advance of the meeting and on the District's website at **rwd.org/agendas-minutes.**

Comprehensive water quality reporting is done on an annual basis and describes the sources of potable water, as well as the supply's composition and how it compares to state and federal health and safety standards.

Rowland Water District is committed to providing safe drinking water and strives to maintain the highest level of public confidence within the community. The District is committed to keeping customers well informed on all issues related to water supply, quality, and conservation.

SOURCES OF WATER

In December 2002, Metropolitan Water District completed a source water assessment of its Colorado River and State Water Project supplies. Colorado River water is considered to be most vulnerable to the effects of recreation, urban and stormwater runoff, increasing urbanization in the watershed, and wastewater. The State Water Project is considered to be most vulnerable to the effects of urban and stormwater runoff, wildlife, agriculture, recreation, and wastewater. A copy of the assessment can be obtained by contacting Metropolitan Water District at (213) 217-6000. In addition to these sources, Rowland Water District stores supplemental groundwater in the Main San Gabriel Basin and Central Basin.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's (U.S. EPA's) Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground it dissolves naturally occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER

Microbial contaminants,

such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals,

that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides

that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants,

including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive contaminants

that can be naturally occurring or the result of oil and gas production and mining activities.

To ensure that water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water

systems. DDW regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants found in drinking water than the general population. Immuno-compromised persons, such as those with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Rowland Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in household plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at *www.epa.gov/lead*.

2021 SAMPLE RESULTS

For specific questions regarding this report or any additional questions related to District drinking water, please contact Elisabeth Mendez, Compliance & Safety Coordinator, at (562) 697-1726 or email info@rowlandwater.com.

Unless otherwise noted, the data presented in this table is from testing completed January 1 - December 31, 2021. The state requires the District to monitor for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. Unregulated contaminant monitoring helps EPA and the DDW determine where certain contaminants occur and whether they need to be regulated.

PRIMARY STANDARDS

Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water
CLARITY										
Combined Filter Effluent (CFE)	TT	NA	NA	Highest	0.03	0.06	0.57		NTU	Soil Dunoff
Turbidity (a)	TT	NA	NA	% <0.3	100%	100%	100%	ND	%	
MICROBIOLOGICAL										
Total Coliform Bacteria (b) (Total Coliform Rule)	5%	(0)	NA		RW	D Distribution System-Wi	de - 1.3%		%	Naturally present in the environment
Fecal Coliform and E.coli (c) (Total Coliform Rule)	(c)	(0)	NA		RV	VD Distribution System-W	ide - 0%		(c)	Human and animal fecal waste
Heterotrophic Plate Count (e)	TT	NA	(1)	Range Average	ND	ND	ND	NC	CFU/mL	Naturally present in the environment
INORGANIC CHEMICALS										
	1000	600	50	Range	ND – 240				nnh	Residue from water treatment process;
	1000	000	50	Average	148	ND	NC	ND	μρο	erosion of natural deposits
Arsenic	10	.004	2	Range				ND – 2.7	ppb	Erosion of natural deposits: glass &
				Average	ND	ND	ND	2		Discharge of oil drilling waste and
Barium	1000	2000	100	Range	110		ND	120 - 130	ppb	from metal refineries; erosion of
				Average	110			120		natural deposits
Copper (d) (f)	AL = 1.3	0.3	0.05		RWD Distri RWD Distributi RWD Distribution S	bution System-Wide – 36 on System-Wide – 90th P System-Wide – Samples B	Samples Collected ercentile Level = 0.12 Exceeding Action Leve	20 el = 0	ppm	Internal corrosion of household pipes; erosion of natural deposits
Fluoride (m)	2	1	01	Range	0.6 – 0.9			0.30 - 0.32	nnm	Erosion of natural deposits; water
	2		0.1	Average	0.7	0.11	NC	0.31	Phil	additive that promotes strong teeth
Lead (f)	AL = 15	0.2	5		RWD Distri RWD Distribu RWD Distribution S	bution System-Wide – 36 tion System-Wide – 90th System-Wide – Samples E	Samples Collected Percentile Level = NE Exceeding Action Leve) el = 0	ppb	Internal corrosion of household pipes; erosion of natural deposits
Nitroto (co. N)	10	10	0.4	Range		0.42 - 0.44	2.2 – 2.9	3.0 - 4.6		Runoff and leaching from fertilizer
	10	10	10 0.4		ND	0.43	2.51	3.6	ppin	or natural deposits
Nitrate + Nitrite (as N)	10	NA -	ΝΔ	Range				3.4	nnm	Runoff and leaching from fertilizer
Nitrate + Nitrite (as N)	10		IN/A	Average	NC	NC	NC	3.4	ppin	use; septic tank and sewage; erosion or natural deposits
Perchlorate (CIO4)	6		4	Range				.57 – 4.4	nnh	Industrial waste discharge
Perchlorate (CIO4) 6	U	1	4	Average	ND	ND	ND	1.9	hhn	industrial waste discridige

PRIMARY STANDARDS (Continued)													
Parameter	State MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (CDWC)	Units	Major Sources in Drinking Water			
VOLATILE ORGANIC C	ONTAN	IINANT	S										
Dibromochloropropane (DBCP)	200	1.7	10	Range Average	ND	ND	ND	NC	ppt	Banned nematicide that may still be present in soils due to runoff/ leaching			
Tetrachloroethylene (PCE)	5	0.06	0.5	Range Average	ND	ND	ND	ND – 0.82 0.16	ppb	Discharge from factories, dry cleaners, and auto shops			
Toluene	150	150	0.5	Range Average	ND	ND	ND	ND	ppb	Discharge from petroleum and chemical refineries			
Trichloroethylene (TCE)	5	1.7	0.5	Range Average	ND	ND	ND	ND – 1.5 0 7	ppb	Discharge from metal degreasing sites and other factories			
RADIOLOGICALS				, a clage				U					
Gross Beta Particle Activity (h)	50	(0)	4	Range Average	4 – 9 5	3.35 – 4.29 3.82	NR	NC	pCi/L	Decay of natural and man-made deposits			
Combined Radium	5	(0)	NA	Range Average	ND	ND (2015)	0.148 (2016)	NC	pCi/L	Erosion of natural deposits			
Radium 226	NA	0.05	1	Range Average	ND	0.88	0.147 (2016)	NC	pCi/L	Erosion of natural deposits			
Radium 228	NA	0.019	1	Range Average	ND – 1 ND	0	0.001 (2016)	NC	pCi/L	Erosion of natural deposits			
Strontium-90	8	0.35	2	Range Average	ND	0.560	NR	NC	pCi/L	Decay of natural and man-made deposits			
Tritium	20,000	400	1,000	Range Average	ND	293	NR	NC	pCi/L	Decay of natural and man-made deposits			
Uranium	20	0.43	1	Range Average	1 – 3 2	ND (2018)	2.2	NC	pCi/L	Erosion of natural deposits			
DISINFECTION BY-PRC	DUCTS	5, DISIN	FECTA	NT RESI	DUALS, AND DISIN	NFECTION BY-PR	DUCTS PRE	CURSORS (k)					
Bromate (k)	10	0.1	1.0	Range Average	ND – 7.0	NR	NA	NC	ppb	By-product of drinking water ozonation			
Total Trihalomethanes (TTHM) (k)	80	NA	1	Range	F	WD Distribution System- RWD Distribution System	Nide - 2.5 - 38.8 n-Wide - 23.51		ppb	By-product of drinking water disinfection			
Haloacetic Acids (HAA5) (k)	60	NA	1	Average Highest	I	RWD Distribution System- RWD Distribution Syster	Wide - 0-17.1 n-Wide - 8.34	ppb	By-product of drinking water disinfection				
Total Chlorine Residual	[4]	[4]	NA	Range Average	R	WD Distribution System-W RWD Distribution Syster	/ide - 2.58-2.85 n-Wide - 2.71	ppm	Drinking water disinfectant added for treatment				
Total Organic Carbon (TOC)	TT	NA	0.30	Range Average	1.8 – 2.5 2.4	1.26 – 1.39 1.33	NR	NC	ppm	Various natural and man-made sources; TOC as a medium for the formation of disinfection by-products.			

SECONDARY STANDARDS - AESTHETIC STANDARDS

Parameter	State MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (LHHCWD)	Units	Major Sources in Drinking Water
Aluminum (d) (n)	200	600	50	Range	ND – 240				- nnh	Residue from water treatment processes: erosion of natural deposits
		0000	00	Average	148	ND	NC	ND	662	······································
Chlorido	500	ΝΙΔ	(2)	Range	95 – 97			20 – 21	nnm	Runoff / leaching from natural deposits; seawater influence
Chionde	500	IN/A	(2)	Average	96	94	NC	20.5	ррп	
Calar	15	NIA	(1)	Range					11.20	Naturally occurring organic materials
COIOI	15	NA		Average	1	ND	NC	ND	Units	
Copper (d) (f)	1	0.3	0.05		RWD Distribution System-Wide – 36 Samples Collected RWD Distribution System-Wide – 90th Percentile Level = 0.120 RWD Distribution System-Wide – Samples Exceeding Action Level = 0					Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Foaming Agents-MBAS	500	NA	(50)	Range	ND	ND	NC	ND	ppb	Municipal and industrial waste discharges
				Range		ND	NO	ND		
Iron	300	NA	100	Average	ND	ND	NC	ND	ppb	Leaching from natural deposits: industrial wastes
		NA		Range					TON	Naturally occurring organic materials
Odor Threshold (I)	3		1	Average	1	1	NC	1		
Specific Conductores	1 600	NA	NIA	Range	962 - 965			490	µS/cm	Substances that form ions when in water; seawater influence
Specific Conductance	1,000		INA	Average	964	560	NC	490		
Sulfate	500	NA	A 0.5	Range	217 – 221			42 – 44	ppm	Runoff / leaching from natural deposite: industrial wastes
	500			Average	219	40	NC	43		runon / reaching nom natural deposits, industrial wastes
Total Dissolved Solids (TDS) (n)	1 000	ΝΔ	(2)	Range	599 – 609			290 – 300	ppm	Runoff / leaching from natural denosits: seawater influence
Total Dissolved Solids (TDS) (h)	1,000	- NA	(2)	Average	604	310	NC	295		Runon / leaching from natural deposits, seawater initidence

OTHER PARAMETERS

GENERAL MINERALS										
Alkalinity	NIA	NA	(1)	Range	123 – 128	85 – 89		170	ppm	Measure of water quality
	INA			Average	126	88	NC	170		
Bicarbonate (HCO3)	NA	NA	NA	Range				200 – 210	ma/l	Naturally occurring from organic materials
	IN/A			Average	NC	NC	NC	205	mg/∟	
Calcium	NIA	NΙΔ	(0.1)	Range	64 – 70	24 – 28		67 – 68	ppm	Measure of water quality
	IN/A	IN/A		Average	67	26	NC	67.5		
Magnesium NA	ΝΙΔ	NIA	(0.01)	Range	25 – 26			12	nom	Measure of water quality
		(0.01)	Average	26	12	NC	12	- phin		
Perfluooroctanesulfonic acid	NL =	NA	NΔ	Range				2.1 – 2.8	nnh	Discharge from manufacturing facilities
(PFOS)	6.5		11/4	Average	NC	NC	NC	2.5	- hhn	
Perfluorooctanoic acid (PFOA)	NL =	NA	NA	Range				ND – 1.7	ppt	Discharge from manufacturing facilities
	5.1			Average	NC	NC	NC	0.4		
Potassium	ΝΔ	NA	(0.2)	Range	4.4 – 4.7	2.7 – 3.0		3.4 – 3.6	ppm	Measure of water quality
				Average	4.6	2.85	NC	3.5		
Sodium	NA	NA	(1)	Range	95 – 101			17	ppm	Measure of water quality
Sodium				Average	98	73	NC	17		
Total Hardness (as CaCO3)	ΝΔ	NA	(1)	Range	270 – 273			220	ppm	Measure of water quality
	IN/A			Average	272	110	NC	220		ivieasure of water quality
Total Hardness (Grains per	NΔ	NΔ	NA	Range	15.77 – 15.95				ana	Macours of water quality
Gallon)			11/4	Average	15.89	6.43	NC	12.85	aba	

OTHER PARAMETERS (Continued)										
Parameter	State MCL	PHG (MCLG)	State DLR	Range Average	Imported Surface Water Weymouth (MWD)	Imported Surface Water Miramar (TVMWD)	Groundwater Miramar (TVMWD)	Imported Groundwater (LHHCWD)	Units	Major Sources in Drinking Water
UNREGULATED CONTA	MINAN	rs								
Boron	NL = 1000	NA	100	Range Average	130	190 – 210 200	NC	ND – 100 50	ppb	Runoff / leaching from natural deposits; industrial wastes
Chlorate	NL = 800	NA	20	Range Average	55	ND	NR	NC	ppb	By-product of drinking water chlorination; industrial processes
Chromium VI	NA	0.02	1	Range Average	ND	ND	NC	2.5 – 2.6 2.6	ppb	Runoff/leaching from natural deposits; discharge from industrial waste factories
N-Nitrosodimethylamine (NDMA)	NL = 10		(2)	Range Average	ND	0 – 3 0	NR	ND	ppt	By-product of drinking water chlorination; industrial processes
MISCELLANEOUS										
Calcium Carbonate Precipitation Potential (CCPP) (I)	NA	NA	NA	Range Average	2.4 – 11 8.3	NR	NR	NC	ppm	Elemental balance in water; affected by temperature, other factors
Corrosivity (Aggressiveness Index)(g)	NA	NA	NA	Range Average	12.4 – 12.5 12.4	12.22 – 12.25 12.23	NR	12.26 – 12.35 12.31	AI	Elemental balance in water; affected by temperature, other factors
Corrosivity (j) (as Saturation Index)	NA	NA	N/A	Range Average	0.52 – 0.61 0.56	0.39 – 0.43 0.41	NR	0.44 – 0.53 0.49	SI	Elemental balance in water; affected by temperature, other factors
рН	NA	NA	N/A	Range Average	8.1	8.5	7.71	7.8 – 7.9 7.9	pH units	Measure of water quality
Total Dissolved Solids (TDS) (o)	1,000	NA	(2)	Range Average	400 – 604 567	260 – 340 304	322.75 – 446.5 357	NC	ppm	Runoff / leaching from natural deposits; seawater influence

[and a sec. of a

DEFINITION OF TERMS

AI	Aggressiveness Index
AL	Action Level
Average	Average value of all samples collected
CaCO3	Calcium Carbonate
ССРР	Calcium Carbonate Precipitation Potential
CDWC	California Domestic Water Company
CFE	Combined Filter Effluent
CFU	Colony-Forming Units
DLR	Detection Limits for Purposes of Reporting
HAA5	Sum of five haloacetic acids
НРС	Heterotrophic Plate Count

LRAA	Locational Running Annual Average
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MFL	Million Fibers per Liter
MRDL	Maximum Residual Disinfectant Level
MRDLG	Maximum Residual Disinfectant Level Goal
MWD	Metropolitan Water District of Southern California
NA	Not Applicable
NC	Not Collected
NR	Not Required

ND	Not Detected at or above DLR or RL	Range	Lowest to highest sampling results
NL	Notification Level to SWRCB	RL	Reporting Limit
NTU	Nephelometric Turbidity Units	SI SWRCB	Saturation Index (Langelier)
pCi/L	PicoCuries per Liter		Control Board
PHG	Public Health Goal	TDS	Total Dissolved Solids
рро	micrograms per liter (µg/L)	TT	Treatment Technique is a
ppm	Parts per million or milligrams per liter (mg/L)		required process intended to reduce the level of a contaminate in drinking water
ррq	Parts per quadrillion or picograms per liter (pg/L)	ттнм	Total Trihalomethanes
RAA	Running Annual Average	TVMWD	Three Valleys Municipal Water District

NOTES

- (a) Metropolitan and Three Valleys MWD monitors turbidity at the CFE locations using continuous and grab samples. Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water standard of less than 5 NTU.
- (b) Results are based on Rowland Water District's distribution system's highest monthly percent positives. 936 samples were analyzed in 2021. The highest monthly percentage was 1.3%. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive.
- (c) The MCL for E. coli is based on routine and repeat samples that are total coliform-positive, and either is E. coli-positive or the system fails to take repeat samples following an E. coli-positive routine sample, or the system fails to analyze a total coliform-positive repeat sample for E. coli. The MCL was not violated.
- (d) Aluminum and Copper have both primary and secondary standards.
- (e) All distribution system samples had detectable total chlorine residuals, so no HPC was required. Metropolitan and Three Valleys MWD monitor HPCs to ensure treatment process efficacy.
- (f) Lead and Copper samples are required to be collected once every three years during the months of June - September. Sample results are from 2021.
- (g) Al \geq 12.0 = Non-aggressive water; Al 10.0-11.9 = Moderately aggressive water; Al \leq 10.0 = Highly aggressive water. Reference: ANSI/AWWA Standard C400-93 (R98)
- (h) Compliance with the state and federal bromate MCL is based on RAA.
- (i) Compliance with odor threshold secondary MCL is based on RAA. Treatment plants begin quarterly monitoring if annual monitoring results are above 3.
- (j) Positive SI = non-corrosive; tendency to precipitate and/or dissolve scale on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM2330)
- (k) RWD was in compliance with all provisions of the Stage 2 Disinfectants and Disinfection By-Products Rule (D/DBPR). Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations.
- (I) Positive CCPP = non corrosive; tendency to precipitate and/or deposit scales on pipe. Negative CCPP = corrosive; tendency to dissolve calcium carbonate. Reference: Standard Methods (SM 2330)
- (m) Metropolitan was in compliance with all provisions of the State's fluoridation system requirements. TVWD does not have fluoride feed systems and all fluoride results are naturally occurring.
- (n) Metropolitan's TDS compliance data are based on flow-weighted monthly composite samples collected twice per year (April and October). The 12-month statistical summary of flow-weighted data is reported in "Other Parameters". TVMVD is required to test once annually for TDS.
- (o) Statistical summary represents 12 months of flow-weighted data and values may be different than the TDS reported to meet compliance with secondary drinking water regulations for Metropolitan. Metropolitans and TVMWD TDS goal is < 500 mg/L.
- (p) Compliance with the State MCL for aluminum is based on RAA. No secondary standard MCL exceedance occurred at the Metropolitan or TVMWD plant effluents.
- (q) Data are from voluntary monitoring of constituents and are provided for informational purposes.

GLOSSARY

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically

and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level

of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG):

The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs,

MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Maximum Residual Disinfectant Level (MRDL):

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal

(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulatory Action Level

(AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT):

A required process intended to reduce the level of a contaminant in drinking water.

Running Annual Average

(RAA): Highest RAA is the highest of all Running Annual Averages calculated as an average of all within a 12-month period.

LRAA: Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12-month period.

Rowland Water District

3021 Fullerton Road Rowland Heights, CA 91748 (562) 697-1726

OFFICE HOURS: Monday - Thursday 7:00 a.m. to 4:30 p.m.

Friday 7:00 a.m. to 3:30 p.m. Closed on alternating Fridays

AFTER HOURS Emergency Service: (562) 697-1726 For questions or more information about this report, please contact Elisabeth Mendez, Compliance & Safety Coordinator, at (562) 697-1726 or visit us online at RWD.org

Join us for a Board Meeting

Rowland Water District's Board of Directors meets at District headquarters on the second Tuesday of the month at 6:00 p.m. Agendas are posted on our website and meetings are open to the public.

Board of Directors

Anthony J. Lima - Division II President Szu Pei Lu-Yang - Division V Vice President John E. Bellah - Division III Director Robert W. Lewis - Division IV Director Vanessa Hsu - Division I Director

Tom Coleman General Manager

RWD.org